
Adding Information to Large Language Models

Team Member: Nicolas Ong

CMPT419 @ Simon Fraser University

Motivation and Objectives

Approach

Data

Modern consumer LLMs like ChatGPT are used to answer questions people have. 

However, LLMs are unable to answer questions about information not in their 

training data, like recent information or domain-specific information.

For this project, our group would like to figure out what techniques are good at 

inserting new information into models. We believe that this is an important 

question as many people have information they'd like to integrate into LLMs like 

ChatGPT.

At a high level, here was our approach:

- Have a model that performs a task that shows it has memorized some 

knowledge

- Test its performance on data it wasn’t taught

- Train the model to memorize this data using various techniques

- Measure how well the model memorized this data, and compare which 

techniques worked the best.

We decided to try 3 techniques:

- More fine-tuning

- More pre-training

- Use a KNN

In addition, we also trained the models with LoRAs (Low Rank Adapters) to see 

how that performed.

In total, we used 4 datasets.

FEVER (Fact Extraction and VERification)

This dataset contains claims like "Anne Rice was born in New Jersey.", with 

labels like "SUPPORTED" or "REFUTED". This dataset is intended to be used for 

the FEVER task (Fact Extraction and VERification), where a model is supposed to 

look at provided evidence and decide if the claim is supported or refuted by the 

evidence. However, for the purposes of our experiments, we only used the claim 

and label parts of the dataset.

BH-TF (Barbenheimer True or False)

This is a custom dataset containing claims like “Barbie was released in 2023” and 

labels of 0 (False) or 1 (True). It was made with information that didn’t exist in 

either GPT2’s training data or in FEVER.

BH-RD (Barbenheimer Raw Data)

This is a custom dataset containing Wikipedia articles, news articles, IMDB 

reviews, and reddit discussions about the movies Barbie and Oppenheimer.

SW-TF (Star Wars True or False)

This is another custom dataset like BH-TF, but on data that existed when GPT2 

was trained and FEVER was made.

Experimental Setup

In “more pre-training”, we tried adding information to the model by continuing 

GPT2’s pre-training objective of next token prediction on BH-RD. Then we 

transplanted the new weights into the fine-tuned models, and hoped that they 

learned new data that way. This would be ideal, as you wouldn’t need to create 

a custom dataset on your model’s downstream task to teach it new information.

This got us 4 models:

- bh-gpt2-ch-cht: gpt2-ch-cht pre-trained on BH-RD

- bh-gpt2-ch-fft: gpt2-ch-fft pre-trained on BH-RD

- bhq-gpt2-ch-cht: gpt2-ch-cht pre-trained on BH-RD, with LoRAs

- bhq-gpt2-ch-fft: gpt2-ch-fft pre-trained on BH-RD, with LoRAs

Finally, in “use a KNN”, we added the data in BH-TF via the external memory of a 

KNN. When a KNN model receives a claim, it looks at what it predicts internally, 

but also the labels of the K nearest claims in its memory. It then combines these 

two predictions.

This gets us 2 additional models:

- gpt2-ch-cht-knn: gpt2-ch-cht with a KNN model trained with BH-TF

- gpt2-ch-fft-knn: gpt2-ch-fft with a KNN model trained with BH-TF

Once we had all our models, we evaluated their performance on all the datasets 

and compared which techniques worked and which didn’t.

For our base model, we used GPT2 with a classification head (gpt2-ch).

We then trained this model to answer True or False questions using the FEVER 

dataset. True or False is the “memorization measure” we use to see if a model is 

memorizing new data.

We got two base models:

- gpt2-ch-cht: only the classification head’s weights were trained.

- gpt2-ch-fft: all the weights (gpt2 + ch) were trained

After this, we trained these models using the techniques we wanted to 

evaluate.

In “more fine-tuning”, we further trained the model on the T/F task, but using 

the BH-TF dataset to add the new information into the model. We also used 

LoRAs here.

This got us 4 models:

- gpt2-ch-cht2: gpt2-ch-cht fine-tuned on BH-TF

- gpt2-ch-fft2: gpt2-ch-fft fine-tuned on BH-TF

- gpt2-ch-cht2q: gpt2-ch-cht fine-tuned on BH-TF, with LoRAs

- gpt2-ch-fft2q: gpt2-ch-fft fine-tuned on BH-TF, with LoRAs

Training Graphs

Results

Fine-tuning and KNNs were the best techniques to add new information into 

the model. Pre-training did not help.

Fine-tuning and KNNs, while improving the model’s performance on the new 

data, they hurt the model’s performance on the data it had previously 

memorized. With fine-tuning, we were able to mitigate this by using LoRAs. 

With KNNs, we did not have a way to mitigate it.

Using LoRAs to mitigate previous knowledge loss only works the first time you 

add new data - the next time you’ll have to update the LoRAs’ or the model’s 

weights. (can you use multiple LoRAs?)

Maybe this can be mitigated in KNNs using a dynamic alpha, where it trusts the 

model more with old data, and the KNN data with new data.

As the models performed poorly on SW-TF - data in GPT2’s training - we can 

guess that the reason pre-training didn’t work is because the data learned in 

pre-training is not retained for the downstream task. Is there a technique that 

allows the model to learn from Wikipedia articles? Does model size matter? The 

downstream task?


	Slide 1

